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SUMMARY 

In this article the problem of finding designs insensitive to the presence of an outlier in a block design for estimating a 
complete set of orthonormal treatment contrasts has been considered when the block effects are random. Also for a treatment-
control block design robustness has been studied for the estimation of the set of elementary contrasts between the effects of each 
test treatment and a control treatment under the same as sumption on the block effects. The criterion of robustness, suggested by 
Mandal (1989) in the block design setup for estimating a full set of orthonormal treatment contrasts, is adapted here. It is shown that 
a randomized block design (RBD) in complete blocks, a balanced incomplete block design (BIBD) and a partially balanced 
incomplete block design (PBIBD), under certain conditions, in incomplete blocks are robust in the above sense. In the treatment-
control setup, a balanced treatment incomplete block design (BTIBD) and a partially balanced treatment incomplete block design 
(PBTIBD), under certain conditions, are also proved to be robust in the above sense. 

Keywords: Robust designs, PBIBD, BTIBD, PBTIBD, Outlier, Mixed effects model. 

1. INTRODUCTION 
Consider the mixed effects model Y = Xβ +e, 

in the standard notations, where Y is the n×1 
vector of observations, X is the n×p matrix of 
independent variables with rank s (≤ p), β is the 
p×1 vector of unknown parameters with at least 
one fixed and at least one random component and 
e is the n×1 vector of random errors. Suppose an 
observation has added to it an ’aberration’ c, of 
unknown magnitude, making it an outlier. It is, 
however, not known to which observation the 
aberration is added. The problem is to find 
designs insensitive to the presence of such an 
outlier. Box and Draper (1975) were the first to 
investigate, in this context, the problem of 
predicting the observed response vector in a 
response surface model. Later Gopalan and Dey 

(1976), Mandal (1989), Mandal and Shah (1993), 
Biswas (2012), Biswas et. al. (2013) and some 
others studied robustness of designs under 
different contexts in a block design setup. But all 
these studies were done considering the situation 
when the parameters are fixed. 

In the present paper an attempt has been 
made to study the robustness of block designs for 
the estimation of a complete set of orthonormal 
treatment contrasts against the presence of an 
outlier when the block effects are random. Also 
for a treatment-control block design, robustness 
has been studied for the estimation of the set of 
elementary contrasts between the effects of each 
test treatment and a control treatment under the 
same assumption on the block effects. 
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A treatment control design is a very popular 
and important design in industrial and 
agricultural trials (cf. Becchofer and Tamhane 
1981, Hedayat et al. 1988. The designs discussed 
here are important in the sense that the BLUEs of 
the treatment contrasts under consideration are 
affected uniformly, though the wild observation 
may occur in any one of the responses. 

The criterion of robustness, used in this 
paper, was introduced in Mandal (1989) and later 
on used by Mandal and Shah (1993) and Biswas 
(2012). For ready reference a brief description is 
given here. It should be noted that only 
connected block designs are considered so that 
the vector of treatment contrasts of interest, ߰*,is 
estimable. For a given design, let ෠߰∗ =  be ܇∗۶
the least squares estimate of ߰* with dispersion 
matrix D( ෠߰∗) = ܄∗ି૚, where ۶∗ and ܄∗ are some 
suitable matrices depending on the model and the 
design, explicit expressions of which are given in 
the later sections. If now the uth observation has 
added to it an aberration c, the change in the ith 

estimated value ෠߰௜∗is given by δiu = chiu, where 
hiu is the (i,u)th element of ۶∗. Let us write the 
vector of changes in the estimated value ෠߰௜∗ of 
߰* as δu= (δ1u, δ2u,..., δv>u)', the value of v' may 
be v-1 as in a block design or v as in a treatment 
control design, v being the number of treatments 
or test treatments as the case may be. A measure 
of overall discrepancy caused by the effect of c 
on the uthobservation is taken as 

݀௨ =  ௨ (1.1)ߜ∗܄௨ᇱߜ

and the average discrepancy is given bydത =
∑ ௗೠ

௡
௡
௨ୀଵ . For the present setups in the next 

sections, ݀̅is shown to be a constant, independent 
of the design. Then to choose a design so that at 
no design point can the addition of c induce large 
discrepancy in ෠߰∗, ݀௨ݏshould be made as uniform 
as possible. One convenient measure of this 
uniformity (cf. Box and Draper, 1975)) is 

(݀)܄ = ∑ (ௗೠିௗത)మ

௡
௡
௨ୀଵ  (1.2) 

Hence, robustness may be defined as follows. 

Definition 1.1: A design is said to be robust 
against the presence of an aberration for 
estimating ߰using a mixed effects model if V(d) 
is minimum. 

It can be seen that ݀௨ݏare the diagonal 
elements of ܿଶ۶∗ᇱ۶∗܄∗. Hence, minimization of 
V(d) implies that dus should be made as uniform 
as possible. Therefore, a design is said to be 
robust if the diagonal elements of ܿଶ۶∗ᇱ۶∗܄∗ are 
as uniform as possible. 

The paper is organized as follows: the 
conditions of robustness for block designs and 
the robustness of a randomized block design 
(RBD), a balanced incomplete block design 
(BIBD) and a partially balanced incomplete 
block design (PBIBD) are derived in Section 2, 
the conditions of robustness for treatment-control 
designs and the robustness of a balanced 
treatment incomplete block design (BTIBD) and 
a partially balanced treatment incomplete block 
design (PBTIBD) are derived in Section 3 and 
finally the discussions on our findings and 
importance of the results are put forward in 
Section 4. 

2. ROBUST BLOCK DESIGNS WITH 
RANDOM BLOCK EFFECTS 
In the block design setup, let there be b 

blocks with size k each and v treatments 1, 2,..., 
v. Let ۲ଵ

௩×௡, ۲ଶ
௩×௡ be the incidence matrices of 

treatments vs. observations and blocks vs. 
observations respectively and ۼ௩×௕ = ۲ଵ۲ଶ

ᇱ  be 
the corresponding treatments vs. blocks incidence 
matrix with elements nij, denoting the number of 
times the ith treatment occurs in the jth block, i = 
1,..., v and j = 1, 2,..., b. The incidence matrices 
and their functions play an important role in 
characterizing a robust design. I, J and 1 denote 
respectively the identity matrix, the matrix with 
all elements 1 and the sum vector of suitable 
orders. Let us restrict to connected designs. 

Consider the mixed effects additive model 

ࢅ = μ૚ + ۲૚
ᇱ ࣎ + ۲૛

ᇱ ࢼ +  (2.1)  ܍
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where µ is an additive constant, T = (τ1,..., τv)' 
is the vector of unknown treatment effects and e 
= (e1,e2,...,en) is the random error vector with 
E(e)= 0 and D(e) = σ2I. Also let ઺ =
⋯,ଶߚ,ଵߚ)  ௕) be the random vector of blockߚ,
effects with E(β)= 0 and D (β) =ߪଵଶ۷. The block 
effects and errors are assumed to be independent. 
So from (2.1) it follows that 

(܇)ܧ = ૚ߤ + ۲૚
ᇱ ࣎ (2.2) 

D(Y) = ߪଶI + ߪଵଶ۲ଶ
ᇱ۲ଶ=diag(K, K,..., K) = Σ

 (2.3) 

where 

K = ߪଶIb + ߪଵଶJb. (2.4) 

Now, 

Σିଵ = ݀݅ܽ݃(Kିଵ, Kିଵ,⋯ , Kିଵ) (2.5) 

It can be easily seen (cf. Bose (1975)) that 

and 

۹ = ௪ି௪ഥ -۷ݓ
࢑
۸ (2.6) 

Σିଵ = ௪ି௪ഥ -۷ݓ
࢑
۲ଶ
ᇱ۲ଶ, (2.7) 

where 

ݓ = ଵ
ఙమ

෥ݓ , = ଵ
ఙమା௞ఙభమ

(2.8) 

Now, with C* = ((ܿ௜௝∗ )) as the information 
matrix for the mixed effects model, the reduced 
normal equations are given as (cf. Bose (1975)) 

۱∗߬̂∗ =  (2.9) ∗ۿ

where ߬̂∗ = ۱∗ିଵۿ∗is a solution to the 
reduced normal equations,۱∗ିଵ = ((ܿ௜௝∗ )) being a 
g-inverse of ۱∗. Without loss of generality, ۱ത∗is 
chosen to be the Moore-Penrose generalized 
inverse. Moreover, with R = diag(r1,...,rv),where 
ri is the number of times the ith treatment is 
replicated in the whole design, i = 1,...,vand r = 
(r1,...,rv),(cf. Bose (1975)), 

۱∗ = ۱ݓ + ∗ۿ ,෥۱෨ݓ = ۿݓ +  ෩, (2.10)ۿ෥ݓ

where 

۱ = ܀ − ଵ
௞
ᇱ, ۱෨ۼۼ = ଵ

௞
ᇱۼۼ − ଵ

௡
 ᇱ (2.11)ܚܚ

Q = GY, ۿ෩ = ۵෩(2.12) ܇ 

Here 

۵ = ۲ଵ −
ଵ
௞
۲૛,۵෩ۼ = ۲ଵ − ۵ ଵ

௡
 ଵ,  (2.13)ݎ

such that 

∗ۿ =  (2.14) ,ࢅ∗۵

where 

۵∗= wG + ݓ෥۵෩. (2.15) 

From the above equations, it easily follows 
that 

۱∗1 = 0 (2.16) 

૚ᇱ۵∗ = ૙ᇱ, ۵∗ᇱ۵∗ = ۱∗ (2.17) 

Let us restrict to the class of equireplicated 
designs with a common replication number r. 

The complete set of orthonormal vector of 
treatment contrasts under consideration can be 
taken as 

߰ =  τ (2.18)۾

where P is a (v - 1) × v matrix such that  

෩۽ = ቀ ଵ
√௩

 ᇱቁis an orthogonal matrix of۾,1
order v. It is clear that P satisfies 

P1 = 0, PP = I,۾ᇱ۾ = ۷ − ૚
࢜
۸. (2.19) 

Then it follows from (2.9), (2.14), (2.18) and 
(2.19) (cf.Mandal (1989)) that, for a given 
design, the least squares estimate of ࣒is 

෡࣒ ∗ = ∗̂߬۾ = ∗ۿ۾૚ି(ᇱ۾∗۱۾) =  (2.20) ܇∗۶

where 

H* = (۾∗۱۾ᇱ)ି૚(2.21) .۵۾ 

It is easy to see that ܧ൫ ෠߰∗൯ = ߰and ۲൫ ෠߰∗൯ =
૚ି(ᇱ۾∗۱۾) =  .૚ (say), since D(Q*) =C*, (cfି∗ࢂ
Bose (1975)). Since ߬۾is estimable, it is easy to 
see using (2.21) that 
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ᇱ∗ܪ∗ܪ = ૚ି(ᇱ۾∗۱۾) =  ૚. (2.22)ି∗ࢂ

Now, it can be easily shown that 

݀̅ = ଵ
௡
∑ ݀௨௡
௨ୀଵ = ௖మ(௩ିଵ)

௡
 (2.23) 

which is a constant independent of the design. 

As mentioned earlier, a design for which the 
diagonal elements of ܿଶ۶∗ᇱ۶∗܄∗are as uniform 
as possible is robust, we need to work out the 
structure of ۶∗ᇱ۶∗܄∗. 

۶∗ᇱ۶∗܄∗ = ۵∗ᇱ۾ᇱ(۾∗۱۾ᇱ)ି૚܄∗(۾∗۱۾ᇱ)ି૚۵۾∗ 

= ۵∗ᇱ۾ᇱ(۾∗۱۾ᇱ)ି૚۵۾∗ 

= ۵∗ᇱ۾ᇱ(۾∗۱۾ᇱ) 

= ۵∗ᇱ۱∗ᇱ۵∗ (2.24) 

since ۲൫ ෠߰∗൯ =  (ᇱ۾૚ି∗۱۾)

Using (2.13) and (2.15) and since ۱ത∗is a 
Moore-Penrose g-inverse of ۱∗ so that۱ത∗1=0, 

۵∗ᇱ۱ത∗۵∗ = ൫۵ݓᇱ + ۵ᇱݓ෥۵෩ᇱ൯۱ത∗൫ݓ +  ෥۵෩൯ݓ

= ૛۵ᇱ۱ത∗۵ݓ + wݓ෥൫۵ᇱ۱ത∗۵෩ + ۵෩ᇱ۱ത∗۵൯
+  ૛۵ᇱ۱ത∗۵෩ݓ

= ૛ݓ) + ෥ݓݓ + ෥ݓ ૛)۵ᇱ۱ത∗۵෩
+ ෥ݓݓ) − ෥૛)۵ᇱ۱ത∗۲ଵݓ

+
૚
࢔

૛ݓ) − ෥)۵ᇱ۱ത∗۸ݓݓ

+ ෥ݓݓ) + ෥૛)۲ଵݓ
ᇱ۱ത∗۵

+
࢘
࢔

෥ଶݓ) ෥)۲ଵݓݓ−
ᇱ۱ത∗۵

+ ෥ଶݓ ቆ۲ଵ
ᇱ ۱ത∗۲૚ +

૛ܚ

૛ܖ ۸۱
ത∗۸ቇ 

ۼ =
ݎ
݊ ۲૚

ᇱ ۱ത∗۸ −
ݎ
݊ ۸۱

ത∗۲ଵ 

= ݓ) ෥)ଶ۵ᇱ۱ത∗۵ݓ−
+ ෥ݓݓ) ෥ଶ)(۵ᇱ۱ത∗۲ଵݓ− + ۲ଵ

ᇱ۱ത∗۵)
+ ෥ଶ۲ଵݓ

ᇱ ۱ത∗۲ଵ 

= ଶ۲ଵݓ
ᇱ۱ത∗۲ଵ + ൫௪௪෥ି௪෥ మ൯

௞
۲ଵ
ᇱ ۱ത∗۲ଶ +

൫௪௪෥ି௪෥ మ൯
௞

۲ଶ
ᇱ ۱ത∗۲ଵۼ + (௪ି௪෥)૛

௞మ
۲ଶ
ᇱ۱ۼത∗۲ۼଶ (2.25) 

Thus, from (2.25) a set of suffcient conditions 
for a design to be robust is that the diagonal 
elements of each of the four terms in the 
expression are separately as uniform as possible. 
Hence the following theorem can be stated. 

Theorem 2.1: In the class of all connected proper 
block designs, a design is robust against the 
presence of an aberration for estimating ip in the 
mixed model setup if the diagonal elements of 
۲ଵ
ᇱ۱ത∗۲ଵ, ۲ଵ

ᇱ۱ത∗۲ۼଶand that of ۲ଶ
ᇱ  ۲ଶ areۼ∗۱തۼ

separately as uniform as possible. 

For a design to be robust, the conditions in 
the above theorem are sufficient. This requires 

௨ᇱ܍ ۱ത∗܍௨= constant, ܍௨ᇱ ۱ത∗࢔௨∗ = = constant, 
∗௨ܖ ۱ത∗࢔௨∗ = = constant ∀u, (2.26) 

where the uth observation occurs in the jth block 
with the ith treatment. Here, ܍௨and ࢔௨∗ are the 
uthcolumns of D1 and ND2 respectively. From 
Theorem 2.1 and (2.26), a set of sufficient 
conditions for a block design to be robust can be 
obtained and is given below. 

i) c*ii is constant for all i = 1,2,...,v, 

ii) ۱ത࢔௝∗ = gj, j = 1, 2,..., b, 

where gj is a v dimensional vector with two 
distinct elements, independent of j, correspond-
ing to the elements 1 and 0 in nj, j = 1, 2,..., b. 

From the above discussion the following 
observations may be drawn. 

Corollary 2.1: For an RBD and a BIBD the two 
conditions as stated before are satisfied and 
hence they are robust. 

Example 2.1: Let us consider a BIBD from 
Raghavarao (1971) with parameters v = 13, r = 4, 
k = 4, b = 13, λ = 1. The blocks are (0,1, 3, 9), 
(3, 4, 6, 12), (6, 7, 9, 2), (9, 10, 12, 5), (12, 0, 2, 
8), (1, 2, 4, 10), (4, 5, 7, 0), (7, 8, 10, 3), (10, 11, 
0, 6), (2, 3, 5, 11), (5, 6, 8, 1), (8, 9, 11, 4), (11, 
12, 1, 7) numbered as 1, 2,..., 13 respectively. It 
follows from our computation that, c*w = 
0.2833762 for all i = 1,2,...,13 and ۱ത࢔௝∗ , is a 
column vector with elements 0.212532 in those 
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positions where 1 occurs in njand -0.0944587 
where 0 occurs in nj, for all j = 1, 2,..., 13. For 
this computation σ is assumed to be 1 and σ1 is 
assumed to be 5 to keep a distinction between the 
two variances. Elaborately, when j= 1, g1= 
(0.212532, 0.212532, –0.0944587, 0.212532, –
0.0944587, –0.0944587, –0.0944587, –0.0944587, –
0.0944587, –0.0944587, –0.0944587, –0.0944587)’. 
Here, the element 0.212532 occurs for treatment 
positions 0,1,3,9 i.e. those treatments present in 
the 1st block and –0.0944587 occurs for treatment 
positions 2,4,5,6,7,8,10,11,12 i.e. those not 
present in block 1. Hence, this design is robust as 
it satisfies the above two stated conditions. 

In the PBIB design setup, the two conditions 
stated above lead to the following corollary. 

Corollary 2.2: A PBIB design with two-
associate classes is robust against the presence of 
an aberration for estimating ip in the mixed 
model setup if for it any treatment i appearing in 
block j, the number of first associates of i 
occurring in the block is a constant independent 
of i and j, i = 1,2,..., v,j= 1, 2,..., b. 

Examples of such PBIBDs are cited in 
Gopalan and Dey (1976). One such example is 
discussed here elaborately. 

Example 2.2: Let us consider a two-associate 
semi-regular group divisible PBIBD from 
Clatworthy (1973), SR4 with parameters v = 4, r 
= 4, k = 2, b = 8, m = 2, n = 2, λ1 = 0, λ2 = 2. 
The groups of the association scheme are (1, 3) 
and (2, 4). The blocks are (1, 2), (3, 4), (4, 1), (2, 
3), (1, 2), (3, 4), (4, 1), (2, 3) numbered as 1, 2,..., 
8 respectively. Obviously, this design satisfies 
the condition of Corollary 2.1. Now, we show 
that it satisfies the conditions of Theorem 2.1. It 
follows from our computation that ۱∗௜௜= 
0.3076923 for all i = 1, 2, 3,4 and ۱ത࢔௝∗ , is a 
column vector with elements 0.245192 in those 
positions where 1 occurs in njand -0.245192 
where 0 occurs in nj, j = 1,2,...,8. For this 
computation σ is assumed to be 1 and σ1 is 
assumed to be 5 to keep a distinction between 
the two variances. Elaborately, whenj = 1, g1 = 
(0.245192, 0.245192, -0.245192, -0.245192)’. Here, 

the element 0.245192 occurs for treatment 
positions 1, 2 i.e. those treatments present in the 
1st block and –0.245192 occurs for treatment 
positions 3, 4 i.e. those not present in block 1. 
Hence, this design is robust as it satisfies the 
above two stated conditions. 

3. ROBUST TREATMENT-CONTROL 
BLOCK DESIGNS WITH RANDOM 
BLOCK EFFECTS 
In this section robustness of treatment-control 

designs is considered. The formulation of the 
criterion of robustness remains the same as in a 
block design setup, except that here (v + 1) 
treatments are involved with one control 
treatment 0, with replication r0 and v test 
treatments with a common replication number r. 
Let us restrict to connected designs. 

The information matrix for a single control 
and v test treatments can be partitioned as 

C∗ = ൤ܿଵଵ ܿଵᇱ
ܿଵ ܿଵ∗

൨ (3.1) 

 ଵଵis the element in the first row and columnࢉ
of ۱∗, ࢉ૚ᇱ  = (c12, c13,...,ܿଵ௩ାଵᇱ ) and ࢉ૚∗ ∗௜௝ࢉ)) =  )), i, j 
+ ݒ ,...,3 ,2 =  1തതതതതതതത. As the design is connected, a g-
inverse of ۱∗ is taken as 

Cത ∗ = ൤0 0ᇱ
0 ܿଵ∗ିଵ

൨ (3.2) 

without loss of generality. 

The set of elementary contrasts between the 
effects of each test treatment and the control 
treatment is given by 

ૐ =  (3.3) ,߬۾

where P = (-1,I) is a v ×(v + 1) matrix satisfying 

P1 = 0, Pᇱ1 = ,ݒ−) 1ᇱ), 

Pᇱ JP = ൤ ݒ
ଶ 1ᇱݒ−

1ݒ− J ൨ 

PᇱP = ቂ ݒ −1ᇱ
−1 I

ቃ  (3.4) 
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Then it follows from (2.14) and (3.3) that, for a 
given design, the least squares estimate of ip is 

ૐ෡ ∗ = ∗ૌො۾ = ∗۶,܇∗۶ =  ۱ത∗۵∗ (3.5)۾

It is easy to see that E( ෡࣒ ∗) = ࣒and D( ෡࣒ ∗) = 
ᇱ۾∗۱ത۾ =  ૚ (say), assuming ۱ത∗to be aି∗܄
symmetric g-inverse of C. Since ۾ૌis estimable, 
it is easy to see that using (3.5) 

۶∗۶∗ᇱ = ᇱ۾∗۱ത۾ =  ૚ (3.6)ି∗ࢂ

Now, as before it can be easily shown for the 
treatment-control setup as well that 

݀̅ = ଵ
௡
∑ ݀௨ =௡
௨ୀଵ

௩௖మ

௡
 (3.7) 

which is a constant independent of the design. 

Using (3.5) and (3.6) 

۶∗ᇱ۶∗܄∗ = (۵∗ᇱ۱ത∗۾ᇱ)܄(۱۾ത∗۵∗)  

= ۵∗ᇱ۱ത∗۾ᇱ(۱۾ത∗۾ᇱ)ି૚(۱۾ത∗۵∗) (3.8) 

Now, using (3.2) in (3.8) and after a brief 
algebra, it follows that 

۶∗ᇱ۶∗܄∗ = ∗૚ࡳ૚∗ି૚࡯૚∗ᇱࡳ  (3.9) 

Here, ۵∗ is partitioned as 

۵∗ = ൤݃૙
∗ᇱ

∗૚ࡳ
൨ =0, (3.9) 

where ݃૙∗ᇱ is the first row of the matrix ۵∗ 
corresponding to the control treatment and ࡳ૚∗  is 
the sub-matrix of ۵∗ corresponding to the v test 
treatments. Because of (2.19), ݃૙∗ and ࡳ૚∗  are 
related through 

1ᇱࡳ૚∗ = −݃૙∗ (3.10) 

Let us restrict to the class of designs for 
which the information matrix ࡯૚∗ି૚ is completely 
symmetric (c.s) or equivalently ࡯૚∗ି૚is c.s with 
 ૚∗ି૚= a1I + a2J, a1and a2are some constants࡯
dependent on the design. Because of (3.10), (3.9) 
can be expressed as 

۶ᇱ۶܄ = ܽଵ۵ଵ∗ᇱ۵ଵ∗ + ܽଶg଴∗g଴∗ᇱ (3.11) 

Hence, the following theorem can be 
obtained. 

Theorem 3.1: In the class of all connected 
treatment-control block designs, a design is 
robust against the presence of an aberration for 
estimating ߰if 

i) ۱૚∗  is c.s and 

ii) After a brief algebra it is derived that 

the diagonal elements of g଴∗g଴∗ᇱ and that of 
۵ଵ∗ᇱ,۵ଵ∗  are separately as uniform as possible. 

g଴∗ᇱ = ቂ(௪෥ି௪)
௞

ቃ۲ଶ
ᇱ۲ଶ݀଴ −

௥௪෥
௡
۷ + w݀଴ (3.12) 

۵ଵ∗ = ۲ଵଵݓ ቈ
෥ݓ) − (ݓ

݇
቉۲ଵଵ۲ଶ

ᇱ −
෥ݓݎ
݊ ۸ 

۵ଵ∗ = ۲ଵଵݓ + (௪෥ି௪)
௞

۲ଵଵ۲ଶ
ᇱ۲ଶ

௥௪෥
௡
۸   (3.13) 

where ۲ଵ = ൤ ݀଴
ᇱ

۲ଵଵ
൨. Again, from (3.11) and 

(3.12) it follows that 

g଴∗g଴∗
ᇲ

= ଶ݀଴݀଴ᇱݓ

+ ݓ ൤
෥ݓ − ݓ
݇ ൨ (݀଴݀଴ᇱ۲ଶ

ᇱ۲ଶ + ۲ଶ
ᇱ۲ଶ݀଴݀଴ᇱ )

−
෥ݓݓ଴ݎ
݊

(݀଴૚ᇱ + ૚݀଴ᇱ )

+ ቈ
෥ݓ) (ݓ−

݇
቉
૛

۲ଶ
ᇱ۲ଶ݀଴݀଴ᇱ۲ଶ

ᇱ۲ଶ

−
෥ݓ଴ݎ
݊

෥ݓ − ݓ
݇

(۲ଶ
ᇱ۲ଶ݀଴૚ᇱ + ૚݀଴ᇱ۲ଶ

ᇱ۲ଶ) 

෥ݓ+ ଶ ௥బ
మ

௡మ
۸  (3.14) 

۵ଵ∗ᇱ۵ଵ∗ = ଶ۲ଵଵᇱݓ ۲ଵଵ + ݓ ௪෥ି௪
௞

(۲ଵଵᇱ ۲ଵଵ۲ଶ
ᇱ۲ଶ −

۲ଶ
ᇱ۲ଶ۲ଵଵᇱ ۲ଵଵ) − ௥௪௪෥

௡
(۲ଵଵᇱ ۸ + ۸۲ଵଵ) +

ቂ(௪෥ି௪)
௞

ቃ
૛
۲ଶ
ᇱ۲ଶ۲ଵଵ۲ଶ

ᇱ۲ଶ −
௥௪෥
௡

௪෥ି௪
௞

ቀ۲ଶ
ᇱ۲ଶ۲ଵଵᇱ ۸ +

۸۲ଵଵ۲ଶ
ᇱ۲ଶ + ෥ଶݓ ௥బ

మ௩
௡మ
۸ቁ  (3.15) 
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Let us denote the (u,u)thelement of a matrix A 
by (A)u,u. So, it can be observed from (3.14) and 
(3.15) respectively that if the uthunit occurs in the 
jth block with the ith test treatment 

g଴∗g଴∗ᇱ = ቂ௪෥ି௪
௞
଴௝ݎ −

௥బ௪෥
௡
ቃ
ଶ
 (3.16a) 

and if the uth unit occurs in the jth block with 
the control treatment, where r0jis thenumber of 
times the control treatment occurs in the jth block 

g଴∗g଴∗ᇱ = ଶݓ + ݓ2 ௪෥ି௪
௞
଴௝ݎ − 2 ௥బ௪෥

௡
+

ቂ௪෥ି௪
௞
଴௝ݎ −

௥బ௪෥
௡
ቃ
ଶ
  (3.16b) 

Again, if the uth unit occurs in the jth block 
with the ith test treatment 

(۵ଵ∗ᇱ ۵ଵ∗)௨௨ = ଶݓ + ݓ2 ௪෥ି௪
௞
݊௜௝ − 2 ௥బ௪௪෥

௡ೠೠ
+

ቂ௪෥ି௪
௞
଴௝ݎ −

௥௪෥
௡
ቃ
ଶ
  (3.17a) 

and if the uth unit occurs in the jth block with 
the control treatment 

(۵ଵ∗ᇱ ۵ଵ∗)௨௨ = ଶݓ + ݓ2 ௪෥ି௪
௞
݊௜௝ − 2 ௥బ௪௪෥

௡ೠೠ
+

ቂ௪෥ି௪
௞
ቃ
ଶ
∑ ݊௜௝ଶ − 2 ௥௪෥(௪෥ି௪)

௡
+ ෥ଶݓ ௥

మ௩
௡మ

௡
௨ୀଵ   (3.17b) 

Thus, from (3.16a) and (3.17a), a set of 
sufficient conditions for a treatment-control 
design to be robust can be obtained and is given 
below. 

1. ۱૚∗  is completely symmetric and 

2. The frequencies in the non-empty cells 
for the test treatments are all equal and 
the number of times the control treatment 
occurs in each block over the whole 
design is a constant. 

Corollary 3.1: It is clear that for an R-type 
BTIBD both the above conditions in are satisfied 
and hence it is robust. 

4. CONCLUSION 
1. All the results in the context of fixed 

block effects regarding the robustness of 
RBD, BIBD, PBIBD in their respective 

setups (cf. Mandal 1989, Mandal and 
Shah 1993) are satisfied with random 
block effects as well. 

2. In the treatment-control setup, an R-type 
BTIBD is proved to be robust in the 
above sense as was true with fixed block 
effects in Biswas (2012). Moreover, it is 
seen following Biswas (2012) that a 
PBTIBD with two-associate classes and 
random block effects with a constant 
number of first associates of any test 
treatment in any block is robust as well. 

3. For S-type BTIB designs, the control 
treatment does not occur an equal number 
of times in all the blocks and since the 
conditions stated in Section 3 are only 
sufficient for a design to be robust, 
nothing can be concluded about the 
robustness of such designs. However, a 
separable S-type BTIB design (Biswas 
(2012)) with random block effects can be 
considered a nearly robust design among 
competing designs. 
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